Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202400375, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622985

RESUMO

Although it is well-known that the Lewis acidity of Metal-Organic Frameworks (MOFs) can effectively enhance their catalytic activity in organic transformations, access to these Lewis-acidic sites remains a key hurdle to widespread applications of Lewis-acidic catalysis by MOFs. Easy accessibility of strong Lewis acidic sites onto 2D MOFs by using proper activation methods can be a cornerstone in attaining desired catalytic performance.  Herein, we report a new 2D chemically stable MOF, IITKGP-60, which displayed excellent framework robustness over a wide pH range (2-12). Benefiting from the abundant open metal sites (OMSs) and framework robustness, the catalytic activity of the developed material was explored in one-pot three-component Strecker reaction and Knoevenagel condensation reaction. Moreover, the developed catalyst is superior in catalyzing the reactions involving sterically hindered substrate (1-naphthaldehyde) with high turnover numbers. A comparative catalytic study was conducted using different activation methods (chloroform and methanol exchanged activated samples), highlighting the significant effect of activation methods on its catalytic performances. The sustainable synthetic pathway under solvent-free conditions for a broad scope of substrates using low catalyst loading and excellent recyclability made the developed pH-stable framework a promising heterogeneous catalyst.

2.
Small ; : e2309281, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191986

RESUMO

Metal-organic frameworks (MOFs) have attracted immense attention as efficient heterogeneous catalysts over other solid catalysts, however, their chemical environment instability often limits their catalytic potential. Herein, utilizing a flexible unexplored tetra-acid ligand and employing the mixed ligand approach, a 3D interpenetrated robust framework is strategically developed, IITKGP-51 (IITKGP stands for Indian Institute of Technology Kharagpur), which retained its crystallinity over a wide range of pH solution (4-12). Having ample open metal sites (OMSs), IITKGP-51 is explored as a heterogeneous catalyst in one-pot Hantzsch condensation reaction, with low catalyst loading for a broad range of substrates. The synthesis of drug molecules remains one of the most significant and emergent areas of organic and medicinal chemistry. Considering such practical utility, biologically important Nemadipine B and Nifedipine drug molecules (calcium channel protein inhibitor) are synthesized for the first time by using this catalyst and fully characterized via SC-XRD and other spectroscopic methods. This report inaugurates the usage of a MOF material as a catalyst for the synthesis of drug molecules.

3.
Inorg Chem ; 62(34): 14124-14133, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37589649

RESUMO

Nowadays, coordination polymers (CPs) are promising candidates as sensory materials for their high sensitivity, improved selectivity, fast responsive nature, as well as good recyclability. However, poor chemical stability often makes their practical usage limited. Herein, employing a mixed ligand approach, we constructed a chemically robust CP, {[Zn2L2(DPA)2]·3H2O}n (IITKGP-70, IITKGP stands for the Indian Institute of Technology Kharagpur), which exhibited excellent framework robustness not only in water but also over a broad range of pH solutions (pH = 3-11). The developed framework displayed high selectivity and sensitivity for the detection of trivalent Al3+ ions and toxic hexavalent Cr(VI)-oxo anions in an aqueous medium. The developed framework exhibited an aqueous medium Al3+ turn-on phenomenon with a limit of detection (LOD) value of 1.29 µM, whereas a turn-off effect was observed for toxic oxo-anions (Cr2O72- and CrO42-) having LOD values of 0.27 and 0.71 µM, respectively. Both turn-on and turn-off mechanisms are speculated via spectroscopic methods coupled with several ex situ studies. Such a multiresponsive nature (both turn-on and turn-off) for aqueous medium detection of targeted cations and anions simultaneously in a single platform coupled with high robustness, ease of scalability, recyclability, and fast-responsive nature makes IITKGP-70 highly fascinating as a sensory material for real-world applications.

4.
Inorg Chem ; 62(32): 12989-13000, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37530642

RESUMO

Metal-organic frameworks (MOFs) have been recognized as one of the most promising porous materials and offer great opportunities for the rational design of new catalytic solids having great structural diversity and functional tunability. Despite numerous inherent merits, their chemical environment instability limits their practical usage and demands further exploration. Herein, by employing the mixed-ligand approach, we have designed and developed a robust 3D Co-MOF, [Co2(µ2-O)(TDC)2(L)(H2O)2]·2DMF (H2TDC = 2,5-thiophenedicarboxylic acid, L = 3,3'-azobispyridine), IITKGP-50 (IITKGP stands for the Indian Institute of Technology Kharagpur), which exhibited excellent framework robustness not only in water but also in a wide range of aqueous pH solutions (pH = 2-12). Taking advantage of superior framework robustness and the presence of high-density open metal sites, IITKGP-50 was further explored in catalyzing the two-component Knoevenagel condensation reaction and three-component Strecker reactions. Moreover, to verify the size selectivity of IITKGP-50, smaller to bulkier substrates in comparison with the MOF's pore cavity (8.1 × 5.6 Å2) were employed, in which relatively lesser conversions for the sterically bulkier aldehyde derivatives confirmed that the catalytic cycle occurs inside the pore cavity. The easy scalability, lower catalyst loading compared to that of benchmark MOFs, magnificent conversion rate over a wide range of substrates, and excellent recyclability without significant performance loss made IITKGP-50 a promising heterogeneous catalyst candidate.

5.
Small ; 19(47): e2304581, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37501327

RESUMO

The sensing and monitoring of toxic oxo-anion contaminants in water are of significant importance to biological and environmental systems. A rare hydro-stable SIFSIX metal-organic framework, SiF6 @MOF-1, {[Cu(L)2 (H2 O)2 ]·(SiF6 )(H2 O)}n , with exchangeable SiF6 2- anion in its pore is strategically designed and synthesized, exhibiting selective detection of toxic Cr2 O7 2- oxo-anion in an aqueous medium having high sensitivity, selectivity, and recyclability through fluorescence quenching phenomena. More importantly, the recognition and ion exchange mechanism is unveiled through the rarely explored single-crystal-to-single crystal (SC-SC) fashion with well-resolved structures. A thorough SC-SC study with interfering anions (Cl- , F- , I- , NO3 - , HCO3 - , SO4 2- , SCN- , IO3 - ) revealed no such transformations to take place, as per line with quenching studies. Density functional theory calculations revealed that despite a lesser binding affinity, Cr2 O7 2- shows strong orbital mixing and large driving forces for electron transfer than SiF6 2- , and thus enlightens the fluorescence quenching mechanism. This work inaugurates the usage of a SIFSIX MOF toward sensing application domain under aqueous medium where hydrolytic stability is a prime concern for their plausible implementation as sensor materials.

6.
ACS Appl Mater Interfaces ; 15(25): 30580-30590, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37317896

RESUMO

The selective and rapid detection of trace amounts of highly toxic chemical warfare agents has become imperative for efficiently using military and civilian defense. Metal-organic frameworks (MOFs) are a class of inorganic-organic hybrid porous material that could be potential next-generation toxic gas sensors. However, the growth of a MOF thin film for efficiently utilizing the material properties for fabricating electronic devices has been challenging. Herein, we report a new approach to efficiently integrate MOF as a receptor through diffusion-induced ingress into the grain boundaries of the pentacene semiconducting film in the place of the most adaptive chemical functionalization method for sensor fabrication. We used bilayer conducting channel-based organic field-effect transistors (OFETs) as a sensing platform comprising CPO-27-Ni as the sensing layer, coated on the pentacene layer, showed a strong response toward sensing of diethyl sulfide, which is one of the stimulants of bis (2-chloroethyl) sulfide, a highly toxic sulfur mustard (HD). Using OFET as a sensing platform, these sensors can be a potential candidate for trace amounts of sulfur mustard detection below 10 ppm in real time as wearable devices for onsite uses.

7.
Inorg Chem ; 61(45): 18293-18302, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36318183

RESUMO

Cost-effective adsorption-based C2H2/C2H4 and C2H2/CO2 gas separations are extremely important in the industry. Herein, a pH-stable three-dimensional (3D) metal-organic framework (MOF), IITKGP-25, possessing exposed functional sites is presented, which facilitates such separations with excellent ideal adsorbed solution theory (IAST) selectivity (4.61 for C2H2/C2H4 and 3.93 for C2H2/CO2) under ambient conditions (295 K, 100 kPa, 50:50 gas mixtures) and a moderate affinity toward C2H2 (26.6 kJ mol-1). Interestingly, IITKGP-25 can maintain structural integrity in water and in aqueous acidic/alkaline (pH = 2-10) medium because of the higher coordination numbers around the metal center and the hydrophobicity of the ligand. The adsorption capacity for C2H2 remains unchanged for a minimum of up to five consecutive cycles and 15 days of exposure to 97% relative humidity, which are the prerequisites of an adsorbent for practical gas separation application. Density functional theory (DFT) calculations reveal that the open Cd(II) sites and carboxylate oxygen-coordinated Cd(II) corner of the triangle-shaped one-dimensional (1D) channel are the enthalpically more preferred binding sites for C2H2, which stabilize the adsorbed C2H2 through nonlocal stronger H-bonding and also pπ-dπ and CH-π interactions.

8.
Inorg Chem ; 61(42): 16952-16962, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36219769

RESUMO

Trivalent metal ions (Cr3+, Al3+, and Fe3+) constitute a major section of the environmental pollutants, and their excess accumulation has a detrimental effect on health, so their detection in trace quantity has been a hot topic of research. A highly scalable 3D porous Zn-based luminescent metal-organic framework (MOF) has been synthesized by exploiting the mixed ligand synthesis concept. The strategic selection of an aromatic π-conjugated organic linker and N-rich spacer containing the azine functionality as metal ion binding sites immobilized across the pore spaces, have made this MOF an ideal turn-on sensor for Al3+, Cr3+, and Fe3+ ions with very high sensitivity, selectivity, and recyclability. An in-depth study revealed absorbance caused enhancement mechanism (ACE) responsible for such turn-on phenomena. In order to make the detection process straightforward, convenient, portable, and economically viable, we have fabricated MOF test paper strips (the MOF could be simply immobilized onto the paper strips) for naked eye visual detection under UV light, which, thus, manifests its potential as a real-time smart sensor for these trivalent ions.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Íons/química , Ligantes , Limite de Detecção , Estruturas Metalorgânicas/química , Soluções/química , Alumínio/química , Ferro/química , Cromo/química
9.
Inorg Chem ; 61(31): 12396-12405, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35895324

RESUMO

The development of chemically stable metal-organic framework (MOF)-based luminescent platforms for toxic ion detection in an aqueous medium is highly challenging because most of the classical MOFs are prone to water degradation, and that is the reason why most of the MOF-based luminescent sensors use a nonaqueous medium for sensing. In this contribution, we report two new water-stable luminescent MOFs (Zn-MOF-1 and Zn-MOF-2), assembled from a mixed-ligand synthesis approach. Because of the presence of a hydrophobic trifluoromethyl group to the backbone and stronger metal-N coordination, these MOFs exhibit excellent stability not only in water but also in acidic/alkaline aqueous solutions (pH = 3-10). Here, we report a green sensing approach by exploiting the significant reduction in photoluminescence of these MOFs in the presence of toxic ions. Fe3+ and CrO42-/Cr2O72- ions could be traced with a detection limit (LOD) in the micromolar range (0.045 and 0.745/0.33 µM for Zn-MOF-1; 125.2 and 114.2/83.5 µM for Zn-MOF-2). The mechanistic study reveals that competitive absorption of the excitation energy coupled with fluorescent resonance energy transfer are responsible for the turn-off quenching. The anti-interference ability and recyclability along with the pH stability gave these MOFs high potential to be used as practical sensors toward FeIII and CrVI ions in water as a greenest medium.


Assuntos
Estruturas Metalorgânicas , Cromo , Compostos Férricos , Concentração de Íons de Hidrogênio , Íons , Estruturas Metalorgânicas/química , Água/química
10.
Chemistry ; 27(46): 11804-11810, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34110674

RESUMO

Accumulation of high concentrations of Al(III) in body has a direct impact on health and therefore, the trace detection of Al(III) has been a matter for substantial concern. An anionic metal organic framework ({[Me2 NH2 ]0.5 [Co(DATRz)0.5 (NH2 BDC)] ⋅ xG}n ; 1; HDATRz=3,5-diamino-1,2,4-triazole, H2 NH2 -BDC=2-amino-1,4-benzenedicarboxylic acid, G=guest molecule) composed of two types of secondary building units (SBU) and channels of varying sizes was synthesized by employing a rational design mixed ligand synthesis approach. Free -NH2 groups on both the ligands are immobilized onto the pore surface of the MOF which acts as a superior luminescent sensor for turn-on Al(III) detection. Furthermore, the large channels could allow the counter-ions to pass through and get exchanged to selectively detect Al(III) in presence of other seventeen metal ions with magnificent luminescence enhancement. The observed limit of detection is as low as 17.5 ppb, which is the lowest among the MOF-based sensors achieved so far. To make this detection approach simple, portable and economic, we demonstrate MOF filter paper test for real time naked eye observation.


Assuntos
Estruturas Metalorgânicas , Humanos , Íons , Luminescência , Metais , Porosidade
11.
ACS Appl Mater Interfaces ; 12(37): 41177-41184, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32803939

RESUMO

The stability of microporous metal-organic frameworks (MOFs) in moist environments must be taken into consideration for their practical implementations, which has been largely ignored thus far. Herein, we synthesized a new moisture-stable Zn-MOF, {[Zn2(SDB)2(L)2]·2DMA}n, IITKGP-12, by utilizing a bent organic linker 4,4'-sulfonyldibenzoic acid (H2SDB) containing a polar sulfone group (-SO2) and a N, N-donor spacer (L) with a Brunauer-Emmett-Teller surface area of 216 m2 g-1. This material displays greater CO2 adsorption capacity over N2 and CH4 with high IAST selectivity, which is also validated by breakthrough experiments with longer breakthrough times for CO2. Most importantly, the separation performance is largely unaffected in the presence of moisture of simulated flue gas stream. Temperature-programmed desorption (TPD) analysis shows the ease of the regeneration process, and the performance was verified for multiple cycles. In order to understand the structure-function relationship at the atomistic level, grand canonical Monte Carlo (GCMC) calculation was performed, indicating that the primary binding site for CO2 is between the sulfone moieties in IITKGP-12. CO2 is attracted to the bonded structure (V-shape) of the sulfone moieties in a perpendicular fashion, where CCO2 is aligned with S, and the CO2 axis bisects the SO2 axis. Thus, the strategic approach to immobilize the polar sulfone moiety with a high number of inherent stronger M-N coordination and the absence of coordination unsaturation made this MOF potential toward practical CO2 separation applications.

12.
Chemistry ; 26(55): 12624-12631, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32557878

RESUMO

The design and construction of "thermodynamically stable" metal-organic frameworks (MOFs) that can survive in liquid water, boiling water, and acidic/basic solutions over a wide pH range is highly desirable for many practical applications, especially adsorption-based gas separations with obvious scalable preparations. Herein, a new thermodynamically stable Ni MOF, {[Ni(L)(1,4-NDC)(H2 O)2 ]}n (IITKGP-20; L=4,4'-azobispyridine; 1,4-NDC=1,4-naphthalene dicarboxylic acid; IITKGP stands for the Indian Institute of Technology Kharagpur), has been designed that displays moderate porosity with a BET surface area of 218 m2 g-1 and micropores along the [10-1] direction. As an alternative to a cost-intensive, cryogenic, high-pressure distillation process for the separation of hydrocarbons, MOFs have recently shown promise for such separations. Thus, towards an application standpoint, this MOF exhibits a higher uptake of C2 hydrocarbons over that of C1 hydrocarbon under ambient conditions, with one of the highest selectivities based on the ideal adsorbed solution theory (IAST) method. A combination of two strategies (the presence of stronger metal-N coordination of the spacer and the hydrophobicity of the aromatic moiety of the organic ligand) possibly makes the framework highly robust, even stable in boiling water and over a wide range of pH 2-10, and represents the first example of a thermodynamically stable MOF displaying a 2D structural network. Moreover, this material is easily scalable by heating the reaction mixture at reflux overnight. Because such separations are performed in the presence of water vapor and acidic gases, there is a great need to explore thermodynamically stable MOFs that retain not only structural integrity, but also the porosity of the frameworks.

13.
Inorg Chem ; 59(10): 7056-7066, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32343905

RESUMO

Two azo functionalized Zn(II)-based MOFs, {[Zn(SDB)(3,3'-L)0.5]·xG}n, IITKGP-13A, and {[Zn2(SDB)2(4,4'-L)]·xG}n, IITKGP-13B (IITKGP stands for Indian Institute of Technology Kharagpur), have been constructed through the self-assembly of isomeric N,N'-donor spacers (3,3'-L = 3,3'-azobispyridine and 4,4'-L = 4,4'-azobispyridine) with organic ligand 4,4'-sulfonyldibenzoic acid (SDBH2) and Zn(NO3)2·6H2O (G represents disordered solvent molecules). Single-crystal X-ray diffraction studies reveal the 2D structure with sql topology for both MOFs. However, the subtle change in positions of coordinating N atoms of spacers makes IITKGP-13A noninterpenetrated, while IITKGP-13B bears a 2-fold interpenetrated structure. IITKGP-13A exhibits higher uptake of CO2 over CH4 and N2 with high IAST selectivities for mixed CO2/CH4 (50:50, biogas) and CO2/N2 (15:85, flue gas) gas systems. In contrast, IITKGP-13B takes up very low amount of CO2 gas (0.4 mmol g-1) compared to IITKGP-13A (1.65 mmol g-1) at 295 K. Density functional theory (DFT)-based electronic structure calculations have been performed to explain the origin of the large differences in CO2 uptake capacity between the two MOFs at the atomistic level. The results show that the value of the change in enthalpy (ΔH) at 298 K temperature and 1 bar pressure for the CO2 adsorption is more negative in IITKGP-13A as compared to that in IITKGP-13B, thus indicating that CO2 molecules are more favored to get adsorbed in IITKGP-13A than in IITKGP-13B. The computed values for the Gibbs' free energy change (ΔG) for the CO2 adsorption are positive for both of the MOFs, but a higher value is observed for the IITKGP-13B. The noncovalent types of interactions are the main contribution toward the attractive energies between the host MOF frameworks and guest CO2 molecules, which has been studied with the help of energy decomposition analysis (EDA).

14.
Chemistry ; 26(20): 4607-4612, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31917500

RESUMO

Phosphate-based silver-bipyridine (Ag-bpy) 1D coordination polymer {[{Ag(4,4'-bpy)}2 {Ag(4,4'-bpy)(H2 PO4 )}]⋅2 H2 PO4 ⋅H3 PO4 ⋅5 H2 O}n (1) with free phosphoric acid (H3 PO4 ), its conjugate base (H2 PO4 - ) and water molecules in its lattice was synthesized by room-temperature crystallization and the hydrothermal method. An XRD study showed that coordinated H2 PO4 - , lattice H2 PO4 - anions, free H3 PO4 and lattice water molecules are interconnected by H-bonding interactions, forming an infinitely extended 2D H-bonded network that facilitates proton transfer. This material exhibits a high proton conductivity of 3.3×10-3  S cm-1 at 80 °C and 95 % relative humidity (RH). Furthermore, synthesis of this material from commercially available starting materials in water can be easily scaled up, and it is highly stable under extreme conditions of conductivity measurements. This report inaugurates the usage and design principle of proton-conducting frameworks based on crystallized phosphoric acid and phosphate.

15.
Inorg Chem ; 58(17): 11553-11560, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31398018

RESUMO

In the context of porous crystalline materials toward CO2 separation and capture, a new 2-fold interpenetrated 3D microporous Co-MOF, IITKGP-11 (IITKGP denotes Indian Institute of Technology Kharagpur), has been synthesized consisting of a 1D channel of ∼3.6 × 5.0 Å2 along the [101] direction with a cavity volume of 35.20%. This microporous framework with a BET surface area of 253 m2g-1 shows higher uptake of CO2 (under 1 bar, 3.35 and 2.70 mmol g-1 at 273 and 295 K, respectively), with high separation selectivities for CO2/N2 and CO2/CH4 gas mixtures under ambient conditions as estimated through IAST calculation. Moreover, real time dynamic breakthrough studies reveal the high adsorption selectivity toward CO2 for these binary mixed gases at 295 K and 1 bar. Besides high gas separation selectivity, capacity considerations in mixed gas phases are also important to check the performance of a given adsorbent. CO2 loading amounts in mixed gas phases are quite high as predicted through IAST calculation and experimentally determined from dynamic breakthrough studies. In order to get insight into the phenomena, GCMC simulation was performed demonstrating that the CO2 molecules are electrostatically trapped via interactions between oxygen on CO2 and hydrogen on pyridyl moieties of the spacers.

16.
Inorg Chem ; 58(9): 6246-6256, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30997801

RESUMO

Three Co(II) metal-organic frameworks, namely, {[Co2(L)2(OBA)2(H2O)4]· xG} n (1), {[Co(L)0.5(OBA)]· xG} n (2), and {[Co2(L)2(OBA)2(H2O)]·DMA· xG} n (3) [where L = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene, H2OBA = 4,4'-oxybisbenzoic acid, DMF = dimethylformamide, DMA = dimethylacetamide, and G denotes disordered guest molecules], have been synthesized under diverse reaction conditions through self-assembly of a bent dicarboxylate and a linear spacer with a Co(II) ion. While 1 is crystallized at room temperature in DMF to form a 2D layer structure, 2 is formed by the assembly of similar components under solvothermal conditions with a 3D network structure. On the other hand, changing the solvent to DMA, 3 could be crystallized at room temperature with a 3D architecture. Out of the three, activated sample 2 was found to be permanently microporous in nature, with a BET surface area of 385 m2/g, and exhibited moderately high uptake capacity for C2H2 and CO2 while taking up much less CH4 and N2 at ambient conditions. As a result, high ideal adsorbed solution theory (IAST) separation selectivities are obtained for CO2/N2 (15:85), CO2/CH4 (50:50), and C2H2/CH4 (50:50) gas mixtures, making 2 a potential candidate for those important gas separations at ambient conditions. Moreover, the magnetic properties of 1-3 were studied. 1 and 2 show antiferromagnetic interaction between the Co(II) centers, whereas 3 displays ferromagnetic behavior arising from a counter-complementary effect between two types of links among Co(II) centers in 3.

17.
Chemistry ; 25(25): 6259-6269, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30677177

RESUMO

Proton-conducting materials in the solid state have received immense attention for their role as electrolytes in proton-exchange membrane fuel cells. Recently, crystalline materials-metal-organic frameworks (MOFs), hydrogen-bonded organic frameworks (HOFs), covalent organic frameworks (COFs), polyoxometalates (POMs), and porous organic crystals-have become an exciting research topic in the field of proton-conducting materials. For a better electrolyte, a high proton conductivity on the order of 10-2  S cm-1 or higher is preferred as efficient proton transport between the electrodes is ultimately necessary. With an emphasis on design principles, this Concept will focus on MOFs and other crystalline solid-based proton-conducting platforms that exhibit "ultrahigh superprotonic" conductivities with values in excess of 10-2  S cm-1 . While only a handful of MOFs exhibit such an ultrahigh conductivity, this quality in other systems is even rarer. In addition to interpreting the structural-functional correlation by taking advantage of their crystalline nature, we address the challenges and promising directions for future research.

18.
Chemistry ; 25(7): 1691-1695, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462360

RESUMO

Recently, proton conduction has been a thread of high potential owing to its wide applications in fuel-cell technology. In the search for a new class of crystalline materials for protonic conductors, three metalo hydrogen-bonded organic frameworks (MHOFs) based on [Ni(Imdz)6 ]2+ and arene disulfonates (MHOF1 and MHOF2) or dicarboxylate (MHOF3) have been reported (Imdz=imidazole). The presence of an ionic backbone with charge-assisted H-bonds, coupled with amphiprotic imidazoles made these MHOFs protonic conductors, exhibiting conduction values of 0.75×10-3 , 3.5×10-4 and 0.97×10-3  S cm-1 , respectively, at 80 °C and 98 % relative humidity, which are comparable to other crystalline metal-organic framework, coordination polymer, polyoxometalate, covalent organic framework, and hydrogen-bonded organic framework materials. This report initiates the usage of MHOF materials as a new class of solid-state proton conductors.

19.
Angew Chem Int Ed Engl ; 57(22): 6662-6666, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29575328

RESUMO

Three coordination polymers (CPs) have been synthesized based on a [Co(bpy)(H2 O)4 ]2+ chain (bpy=4,4'-bipyridine) by a template approach. The frameworks are neutralized by different templated polycarboxylate anions (furan di-carboxylate (fdc) in Co-fdc, benzene tri-carboxylate (btc) in Co-tri and benzene tetra-carboxylate (btec) in Co-tetra). These templates with different degrees of protonation and ionic carrier concentration played significant role on crystal packing as well as formation of well-directed H-bonded networks which made these CPs perform well in proton conduction (PC). The PC value reaches to 1.49×10-1  S cm-1 under 80 °C and 98 % relative humidity (R.H.) for Co-tri, which is the highest among CPs/MOFs/COFs and is an example of conductivity in the order of 10-1  S cm-1 . Co-tri and Co-tetra are excellent proton conductors at mild temperature (40 °C) and 98 % R.H. (conductivities up to 2.92×10-2 and 1.38×10-2  S cm-1 , respectively).

20.
Chemistry ; 24(22): 5982-5986, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29436750

RESUMO

Selective adsorption and separation of CO2 from flue gas and landfill gas mixtures have drawn great attention in industry. Porous MOF materials are promising alternatives to achieve such separations; however, the stability in the presence of moisture must be taken into consideration. Herein, we have constructed a microporous metal-organic framework (MOF) {[Co(OBA)(L)0.5 ]⋅S}n (IITKGP-8), by employing a V-shaped organic linker with an azo-functionalized N,N' spacer forming a 3D network with mab topology and 1D rhombus-shaped channels along the crystallographic 'b' axis with a void volume of 34.2 %. The activated MOF reveals a moderate CO2 uptake capacity of 55.4 and 26.5 cm3 g-1 at 273 and 295 K/1 bar, respectively, whereas it takes up a significantly lower amount of CH4 and N2 under similar conditions and thus exhibits its potential for highly selective sorption of CO2 with excellent IAST selectivity of CO2 /N2 (106 at 273 K and 43.7 at 295 K) and CO2 /CH4 (17.7 at 273 K and 17.1 at 295 K) under 1 bar. More importantly, this MOF exhibits excellent moisture stability as assessed through PXRD experiments coupled with surface area analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...